Nonautonomous Stochastic Search in Global Optimization
نویسندگان
چکیده
منابع مشابه
Improved Cuckoo Search Algorithm for Global Optimization
The cuckoo search algorithm is a recently developedmeta-heuristic optimization algorithm, which is suitable forsolving optimization problems. To enhance the accuracy andconvergence rate of this algorithm, an improved cuckoo searchalgorithm is proposed in this paper. Normally, the parametersof the cuckoo search are kept constant. This may lead todecreasing the efficiency of the algorithm. To cop...
متن کاملStationary probability density of stochastic search processes in global optimization
A method for the construction of approximate analytical expressions for the stationary marginal densities of general stochastic search processes is proposed. By the marginal densities, regions of the search space that with high probability contain the global optima can be readily defined. The density estimation procedure involves a controlled number of linear operations, with a computational co...
متن کاملA Model Reference Adaptive Search Method for Stochastic Global Optimization
We propose a new method called Stochastic Model Reference Adaptive Search (SMRAS) for finding a global optimal solution to a stochastic optimization problem in situations where the objective functions cannot be evaluated exactly, but can be estimated with some noise (or uncertainty), e.g., via simulation. SMRAS is a generalization of the recently proposed Model Reference Adaptive Search (MRAS) ...
متن کاملAdaptive search with stochastic acceptance probabilities for global optimization
We present an extension of continuous domain Simulated Annealing. Our algorithm employs a globally reaching candidate generator, adaptive stochastic acceptance probabilities, and converges in probability to the optimal value. An application to simulation-optimization problems with asymptotically diminishing errors is presented. Numerical results on a noisy protein-folding problem are included.
متن کاملExperiments with new stochastic global optimization search techniques
In this paper several probabilistic search techniques are developed for global optimization under three heuristic classi"cations: simulated annealing, clustering methods and adaptive partitioning algorithms. The algorithms proposed here combine di!erent methods found in the literature and they are compared with well-established approaches in the corresponding areas. Computational results are ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Science
سال: 2011
ISSN: 0938-8974,1432-1467
DOI: 10.1007/s00332-011-9112-3